Hydrogeologic Assessment and Simulation of Stream-Aquifer Relations in the Lower Apalachicola–Chattahoochee–Flint River Basin

Study Chief	Lynn J. Torak
Cooperator	Georgia Department of Natural Resources
	Environmental Protection Division
Year Started	2000

Problem

Current hydrologic information and ground-water flow modeling in the lower Apalachicola-Chattahoochee-Flint (ACF) River Basin (map below) are insufficient to describe effects of time-variant irrigation pumping on streamflow. Therefore, existing models cannot accurately predict ground-water or streamflow conditions during a growing season. The Georgia Department of Natural Resources, Environmental Protection Division (GaEPD) has implemented a hydrologic assessment of the Upper Floridan aquifer in southwestern Georgia to obtain new information and to further understanding of stream-aquifer relations and the effects of ground-water pumping on streamflow in a karst hydrologic setting. The U.S. Geological Survey (USGS) has engaged in a cooperative effort with GaEPD to develop a ground-water flow model that can account for stream-aquifer interaction and streamflow reduction because of agricultural pumping. Information obtained from the model is vital for the State's management of ground-water resources and for providing early indications of low-streamflow conditions that would affect delivery of water to downstream, out-of-state users.

Objectives

- Develop new data for the stream-aquifer system by evaluating well-drilling and aquifer-test information.
- Obtain accurate locations of pumped wells for municipal, industrial, and irrigation purposes.
- Collect and compile ground-water-level, stream-seepage, and off-stream spring-discharge data.
- Synthesize newly collected and existing hydrologic data into a transient finite-element model of ground-water flow that can simulate seasonal ground-water levels, stream-aquifer interaction, and pumpage-induced streamflow reduction, and assess the sensitivity of streamflow to ground-water pumping.

Progress and Significant Results, 2002–03

- Collected new hydrogeologic data defining aquifer and semiconfining-unit thickness and extent, and evaluated results of aquifer-performance tests; incorporated new information into Ground-Water-Site-Inventory database.
- Compiled recent (post-1986) hydrogeologic information on aquifer and semiconfining-unit thickness and extent, hydraulic properties, and pumpage, from GaEPD records.

- Incorporated well coordinates from agricultural wells, obtained by GaEPD using global-positioning-system technology, into local database used for developing model inputs.
- Analyzed agricultural withdrawal data for spatial and temporal relations.
- Evaluated ground-water-level measurements, stream-discharge data, hydrograph-separation methods, and off-stream springflow for October 1999, April 2000, and August 2000 conditions to define ground-water flow to streams.
- Installed five real-time streamgaging stations and upgraded one station for water-quality and acoustic velocity meter-ing.
- Added 12 sites to monitor-well network of hourly groundwater-level recorders and one real-time satellite station.
- Initiated application of USGS transient finite-element model, MODFE, and development of automated input/output graphical user interface.

Streamflow gaging network in the lower Apalachicola-Chattahoochee-Flint River Basin and new/upgraded stations (labeled on map).

Chemigation/irrigation apparatus installed in well tapping the Upper Floridan aquifer southeast of Lake Seminole, Decatur County, Georgia. Well is 700 feet deep and was used in an aquifer-performance test. Photo by Lynn J. Torak, USGS.

Typical center-pivot spray-irrigation system used in the lower Apalachicola – Chattahoochee – Flint River Basin, southwestern Georgia. Photo by L. Elliott Jones, USGS.

Control panel and time totalizer for monitoring usage of centerpivot irrigation system. Photo by L. Elliott Jones, USGS.

Flowmeter installed in discharge line of irrigation system. Photo by L. Elliott Jones, USGS.

Real-time streamflow data-collection platform installed at station 02353265, Ichawaynochaway Creek at Georgia Highway 37, near Morgan, Georgia, and graph of data that can be accessed at http://ga.waterdata.usgs.gov/nwis/current/?type=flow&group_key=basin_cd